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Abstract The current success of Density Functional

Theory applications hinges upon the availability of

explicitly density-dependent functionals to self-consis-

tently solve a set of one-electron equations, the Kohn–

Sham (KS) equations, which determine the occupied

orbitals and its associated electronic density. In KS theory,

a local exchange potential is proposed as part of an

effective potential. This potential is compared to the

exchange operator of the Hartree–Fock theory, which is of

a non-local nature. The present paper discusses the varia-

tional framework of the KS equations, and the equivalence

between both exchange potentials within a correlation-free

theory. The common difficulties of current local exchange

functionals to correctly simulate the non-locality of the

exchange energy density in chemical systems are also

analyzed and explained through an exactly solvable model.

We give then numerical arguments and conclude by ana-

lyzing the performance of various commonly used

approximations to exchange functionals.

1 Introduction

The Kohn–Sham (KS) theory [1, 2] is probably today

the most accepted and widely used computational tool

for applications to atoms, molecules, mesoscopic and

extended systems. Needless to say, this theory is widely

considered a powerful and reliable alternative to other

quantum chemical methods rooted on approximations to

the exact electronic wave function. The way in which the

KS equations are solved, having a relatively low com-

putational cost compared with traditional ab initio

methods, has profoundly impacted in last years the field

of quantum chemistry. Additionally, the myriad of appli-

cations to problems of the highest chemical interest has

led to a deep knowledge of its accuracy with respect to

the most employed approximations; however, despite its

successful application to almost all domains of computa-

tional chemistry and physics, we still miss a more

rigorous, systematic and widely enough analysis on some

fundamental aspects of the theory. Particularly, the tra-

versing connection between KS equations and variational

theories might still need further work in order to shed

light about the discussion recently opened in the literature

[3–13]. Note that we aim at further discussing the

implications of one of the key points of the KS theory;

i.e., the local nature of the effective potential, which is

implicitly at the core of the theory and manifests itself in

how the equations are assigned to a variational problem.

Note also that we do not use the term local as synony-

mous of local spin density, as historically done though

recently disapproved. The outline of the paper is the

following. The variational scheme to which the KS

equations are related is discussed in detail in Sect. 2.

Section 3 is devoted to discuss the implications of the

locality hypothesis of the KS potential to obtain the exact

solution of the corresponding ground state of the associ-

ated interacting systems. Finally, Sect. 4 illustrates the

pitfalls of the majority of the exchange potentials com-

monly found in the literature and how they probably arise

from a common origin.
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2 The Kohn–Sham equations

2.1 Background and previous considerations

We will first establish a few previous definitions by con-

sidering the ground state of a N-electron system under the

influence of an external potential; it is also assumed here,

to keep the discussion as simple as possible, that such

ground state is non-degenerate. The energy of such state is

written as:

E ¼ min
W
hWjĤjWi; ð1Þ

where the minimization is done among all the well-

behaved wave functions satisfying the usual normalization

condition ð
R

W�Wds ¼ 1Þ: The Hamiltonian of this systems

is (in a.u.):

Ĥ ¼ T̂ þ Û þ V̂ ; ð2Þ

with

T̂ ¼
XN

i

�1

2
r2ðriÞ

� �

; ð3Þ

Û ¼
XN

i\j

ri � rj

�
�

�
��1
; ð4Þ

V̂ ¼
XN

i

vðriÞ; ð5Þ

being the kinetic energy, the electron repulsion and the

external attraction operators, respectively. The Hohenberg–

Kohn theorem [1] allows us to rewrite Eq. 1 in an

alternative way:

E½q� ¼ F½q� þ
Z

vðrÞqðrÞdr; ð6Þ

where qðrÞ is the exact density of the ground state and F½q�
is the universal density functional, whose expression can be

defined through the constrained search procedure [14]:

F½q� ¼ min
�qðrÞ

min
W!�qðrÞ

hWjT̂ þ ÛjWi; ð7Þ

being �qðrÞ the set of well-behaved densities satisfying now

the corresponding normalization condition,
R

�qðrÞdr ¼ N

(N-representable densities).

The Kohn–Sham theory, as normally formulated, is

based on the following major premise: the exact density of

the ground state of the interacting N-electron system can be

obtained from a non-interacting N-electron system under

the influence of an effective local (multiplicative) potential

(xeff). Thus, the wave function of the non-interacting

system can be described by a Slater determinant whose

spinorbitals are known to be the solution of the following

eigenvalue equations, the so-called KS equations:

�1

2
r2 þ xeff

� �

uiðrÞ ¼ �iuiðrÞ; 8i 2 N: ð8Þ

Note that the corresponding KS eigenfunctions always

obey the canonical form given by Eq. 8; thus, the

orthogonality of these spinorbitals is guaranteed in this

way. Finally, the exact density of the interacting ground

state might be unambiguously expressed as:

qðrÞ ¼
XN

i

qiðrÞ ¼
XN

i

u�i ðrÞuiðrÞ: ð9Þ

2.2 The constrained variation of the energy

After this brief introduction, we ask at this stage the fol-

lowing questions: (a) to what extent the hypothesis of

locality introduced in the KS theory is strictly needed? and

(b) to which variational problem are the set of KS equa-

tions linked? In fact, up to two different frameworks are

presented in the original work [2]. The first one is a Har-

tree-like approximation (see Section II.A of [2]), where

xeff is approximated by a local function, whereas the

second approach (Section II.B) uses a Hartree–Fock like

potential, which is a non-local exchange contribution but

built in this case with the spinorbitals arising from the

solution of the KS equations. We also remind here that the

main hypothesis of the KS theory is perfectly summarized

in the ‘‘Note added in proof’’, which claims that ‘‘it is

possible, formally, to replace the many-electron problem

by an exactly equivalent set of self-consistent one-electron

equations… the approximate theory of Sect. 2’’ if F½q� is

used in the energy variational principle.

We tackle these issues next by applying the condition

of being an extremum to the energy given by Eq. 6,

subject to the normalization condition
R

dqðrÞdr ¼ 0;

which immediately leads to the Thomas–Fermi (TF) like

equations:

dF½q�
dqðrÞ � vðrÞ ¼ l; ð10Þ

with l being the Lagrange multiplier needed to introduce

the referred normalization condition. The parameter l
lacks a physical meaning except for the case where the

energy of Eq. 6 is the free energy corresponding to an

ensemble; in that case l represents the chemical potential

of Thermodynamics. Following [1], the universal

functional F[q] is written as:

F½q� ¼ Ts½q� þ
1

2

Z
qðrÞvHðrÞdrþ Exc½q�; ð11Þ

with the Hartree potential given by:

vHðrÞ ¼
Z

qðr0 Þ
jr� r

0 jdr
0
; ð12Þ
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and where Exc½q� if the exchange-correlation energy func-

tional needed to guarantee the equality between Eqs. 6 and

11. Ts½q� is the kinetic energy of a non-interacting system:

Ts½q� ¼
XN

i

Z
u�i ðrÞ �

1

2
r2

� �

uiðrÞdr; ð13Þ

which, by virtue of the Hohenberg–Kohn (HK) theorem,

must be a functional of the charge density because the

wavefunction, and hence the spinorbitals, must be also

functionals of the density. Therefore, Ts½q� is defined to be

the ground-state kinetic energy of a non-interacting system

whose Hamiltonian operator is:

Ĥs ¼ �
1

2

XN

i

r2
i þ

XN

i

xeffðriÞ; ð14Þ

and for which the energy is Es ¼
PN

i �i: According to the

HK theorem, the universal functional F½q� for the non-

interacting system is Ts½q� and the ground-state energy

could then be written as:

Es½q� ¼ Ts½q� þ
Z

qðrÞxeffðrÞdr; ð15Þ

whose minimum-energy character can be expressed by

applying Levy’s constrained search as:

Ts½q� ¼ min
U!qðrÞ

U �1

2

XN

i

r2
i

�
�
�
�
�

�
�
�
�
�
U

* +

¼ min
fug!qðrÞ

XN

i

Z
u�i ðrÞ �

1

2
r2

� �

uiðrÞdr; ð16Þ

with qðrÞ being a reference charge density that, in KS

theory, coincides with the ground state charge density of

the interacting system. The condition of extremum,

dEs½q� ¼ 0; under the constraint of
R

dqðrÞdr ¼ 0; leads

again to a Thomas–Fermi like equation:

dTs½q�
dqðrÞ � xeffðrÞ ¼ l; ð17Þ

from which the KS equations cannot be obtained because:

(a) they include a single Lagrange multiplier, and (b) the

presence of the functional derivative dTs½q�=dq: They

cannot be obtained by replacing the constraint
R

dqðrÞdr ¼
0 by the N normalization conditions:
Z

du�i ðrÞuiðrÞdrþ c:c: ¼ 0; ð18Þ

which would lead to

uiðrÞ
dTs½q�
dqðrÞ �xeffðrÞ

� �

¼ kiuiðrÞ; 8i¼ 1; . . .;N ð19Þ

which can not be reduced to equations of the type shown in Eq.

8 since, by virtue of the chain rule, the following condition:

uiðrÞ
XN

j

ou�j ðrÞ
oqðrÞ

oTs½q�
ou�j ðrÞ

þ c:c:

( )

¼ �1

2
r2uiðrÞ ð20Þ

should be satisfied for both, Eqs. 19 and 8, to be valid

simultaneously. However, the KS equations (8) are

immediately derived when in Eq. 15, with Ts½q� given by

Eq. 16, the spinorbitals are varied under the constraints of

Eq. 18. In this case the effective potential xeffðrÞ is not

only local, but it must also remain constant under

variations of the spinorbitals; a condition which is also

implicit in the derivation of the KS equations [7, 9, 10].

Finally, a set of KS-like equations can be obtained

adopting a procedure similar to that followed when the

HF equations are deduced. In this case the deduced

equations must be interpreted in a wider sense than Eq. 8

because the effective potential xeffðrÞ could be either a

local or, such it has been stressed by Nesbet [4], a linear

operator. From Eqs. 6 and 11, where all the members are

considered as explicit functionals of the spinorbitals, it is

easy to obtain Eq. 8 but now the effective potential is

defined as:

xeffðrÞ ¼ vðrÞ þ vHðrÞ þ
XN

j

dExc½q�
du�j ðrÞ

p̂j; ð21Þ

where p̂j is the projector associated to the j-th spinorbital.

Equation 8 with xeff given by Eq. 21 can lead to both Eqs.

(2.8) and (2.22) of [2]. The latter are easily derived if Exc½q�
is written as the sum of two components, as suggested in

Section II.B of [2]:

Exc½q� ¼ Ex½q� þ Ec½q�; ð22Þ

with Ex½q� equal to the definition in HF theory but

evaluated with the KS spinorbitals:

Ex½q� ¼
XN

ij

ZZ u�i ðrÞu�j ðr
0 Þuiðr

0 ÞujðrÞ
r� r0j j drdr

0
: ð23Þ

The present discussion is aimed to shed some light on some

aspects that remain unclear in the framework of KS theory.

The eigenvalue equations (2.8) and (2.22) proposed in [2]

are rigorously supported by the arguments discussed here.

The restriction of a local effective potential can in principle

be removed.

Finally, and connecting with the recent discussion about

the nature of the KS equations [3–13], the present results

show that although the TF-type equations obtained by

applying the Fréchet criteria [15–17] to the definition of

dE½q�; see Eqs. 10, 17, are not equivalent to the KS

equations, although they are closely related to each other.

In fact, the Fréchet or Gâteaux functional derivatives

[15–17] have their counterparts in differential calculus in

the concepts of total derivative and partial derivative,
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respectively. And, as it is well known, the former can be

expressed in terms of the whole set of partial derivatives

with respect to the basis elements.

For the KS problem discussed here it is easy to obtain

the Fréchet functional derivative starting with the N

Gâteaux functional derivatives when applying the con-

strained search [14]. Now the extremum condition for

dTs½q� is written as the following set of N equations:

dTs½q�
dqiðrÞ

¼ �i � xeffðrÞ; 8i ¼ 1; . . .;N ð24Þ

which corresponds to Eqs. 11 of [7], with vðrÞ ¼ xeffðrÞ
and ni ¼ 1: Equation 24 correspond to Gâteaux functional

derivatives. On the other hand, Eq. 13 together with Eqs. 8

and 24 lead after some simple manipulations to the

following relationship:

Ts½q� ¼
1

N

Z
qðrÞ

XN

i

dTs½q�
dqiðrÞ

dr: ð25Þ

Assuming that xeffðrÞ is kept constant when the

spinorbitals are varied, a condition implicit in [7] when

obtaining Eq. 24, the equality

dTs½q�
dqðrÞ ¼

1

N

XN

i

dTs½q�
dqiðrÞ

ð26Þ

is obtained. Equation 26 coincides with the result obtained

by Lindgren y Solomonson (Eq. 21 of [10]) for a system of

independent particles (with E ¼
PN

i ei), which shows the

relationship between the Fréchet derivative and the N

Gâteaux derivatives. The equality between Eqs. 26 and 21

of [10] shows the equivalence between the two procedures

followed in both references [7, 10] to incorporate the

normalization conditions in the variational optimization of

the energy.

3 The exchange potential in a correlation-free

Kohn–Sham theory

The validity of the hypothesis of a KS local potential has

been also recently discussed by comparing the results

between the HF and the KS solution on a set of atomic

systems [4, 5, 18, 19]. Note that the discussion is done for a

correlation-free KS model in which EKS
xc ¼ EKS

x and, con-

sequently, the hypothesis of locality for the effective

potential is reduced to the locality of the exchange potential;

i.e., the last term of Eq. 21 with Ec½q� of Eq. 22 taken as

zero. For a correlation-free theory, where the energy cor-

responds to the solution of Eq. 1 with W given by a Slater

determinant, the ground state of the reference interacting

system is described by the Hartree–Fock solution.

Additionally, it has been also found how the values of

Eq. 1 obtained by using the KS Slater determinant, the

Optimized Effective Potential (OEP) method [20–25], or

the HF model, systematically differ between them. The KS

results correspond in this case to the correlation-free

model, after assuming a local exchange potential, and the

KS orbitals were obtained from the HF exact density by

some of the well-rooted procedures established in the lit-

erature [6, 7, 26]. Note that in all cases the relationship

EKS [ EOEP [ EHF was observed; the exception being the

ground state of the Helium atom since for this system the

exchange energy is exactly half of the electronic repulsion

energy and thus the exchange potential is strictly local. The

differences found between the energy values are not

believed to come from numerical errors and, therefore,

Nesbet and Colle [5] concluded in their study that the

exchange potential does not need to be of a local nature.

They also proposed a method to analyze the locality of the

KS solution through the value of the integral Q(Z), see

Eq. 15 of [5], leading to the conclusion that the locality

hypothesis is not supported by the results of the calcula-

tions. The use of Q(Z) as a robust test to analyze the

locality of the KS solution has been, however, rejected by

other authors [9].

For a correlation-free theory, the KS hypothesis implies:

qKSðrÞ ¼ qHFðrÞ; ð27Þ

where the corresponding densities are given by:

qKSðrÞ ¼
X

r

XNr

i

/KS�
ir ðrÞ/

KS
ir ðrÞ; ð28Þ

qHFðrÞ ¼
X

r

XNr

i

/HF�
ir ðrÞ/

HF
ir ðrÞ; ð29Þ

and /irðrÞ is the r spin-indexed ith-occupied orbital. These

orbitals (KS or HF) are also used to build the associated

Slater determinants. Note that according to this condition,

both set or orbitals will be related by an unitary

transformation through the corresponding matrix UKS
HF :

UKS ¼ UKS
HFU

HF; ð30Þ

where Ux represents the vector formed by the N-occupied

spinorbitals defining the corresponding Slater determinant.

So that, the KS hypothesis implies that both sets of KS and

HF occupied orbitals transform between them by blocks

characterized by a common spin. The implication of this

feature is that the KS and HF one-electron density matrices

are also the same and thus the value of hUjĤjUi; with Ĥ

given by Eq. 14. The same is also true for each component

of the total energy. The KS hypothesis on the density also

implies a specific relation between the exchange potential

of Eqs. 21, 22, taken as local, and the non-local HF

exchange operator, k̂HF defined through its action on /jðrÞ
as:
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k̂HF/jrðrÞ ¼
X

r0

XNr
0

ir0
drr0

Z
/�ir0 ðr

0 Þ/jrðr
0 Þ

r� r0j j dr
0
/ir0 ðrÞ: ð31Þ

In fact, if in the following equation:

X

r

XNr

i

�KS
ir ¼

X

r

XNr

i

/KS
i �

1

2
r2 þ xeffðrÞ

�
�
�
�

�
�
�
�/

KS
i

� 	

ð32Þ

the HF operator is added and subtracted into the bracket,

we immediately arrive to

Z
vKS

x ðrÞqðrÞdr ¼ �
X

r

XNr

i

Z
/�irðrÞk̂HF/irðrÞdrþ D;

ð33Þ

with

D ¼
X

r

XNr

i

�KS
ir � �HF

ir


 �
; ð34Þ

and vKS
x the corresponding local KS exchange potential.

Equation 33 establishes a direct relationship between the

action of the KS exchange potential and the non-local

exchange operator of HF theory. Only if D = 0 the KS

exchange potential, which is a local potential by con-

struction, and the HF exchange operator, which is the true

non-local potential, will be equivalent.

We show in Table 1 some numerical examples of results

from correlation-free calculations. More specifically,

Table 1 gathers the ground-state energies, as well as the

orbital energies and their sums, for the closed-shell He, Be,

and Ne atoms. We compare several exchange-only theo-

ries, as described above: HF, OEP, exchange Slater

potential (xS) [27, 28] defined by:

Vr
xSðrÞ ¼ �

1

qrðrÞ
XNr

ij

Z
u�i ðrÞu�j ðr

0 ÞujðrÞuiðr
0 Þ

r� r
0j j dr

0
; ð35Þ

and approximate KS results based on the B88 exchange

functional [29], which is probably the most well-known

example of a Generalized Gradient Approximation

exchange energy functional. The exact KS results are also

included; the latter were obtained by using the HF density

and iteratively solving for the vxðrÞ until self-consistency

by enforcing the condition qðrÞ ¼ qHFðrÞ in each step of

the convergence process followed to obtain the KS orbitals

[26]. From Table 1 the values of D, as given by Eq. 34,

0.608 and 2.156 a.u., for Be and Ne, respectively, are

readily obtained; they indicate the non-equivalence

between the local KS and the HF exchange potential, in

agreement with previous findings [4–6].

Furthermore, according to the above discussion about

the equivalence of both set of occupied KS and HF orbitals,

the corresponding KS and HF energies, as well as their

components, should be the same, which is not observed

from the values shown in Table 1. All the features dis-

cussed above points to the fact that a correlation-free

theory with a local effective potential and providing the HF

density is not feasible at all, despite the fact that the pro-

cedure followed to obtain the KS results leads to values

very close to the HF ones. The closeness between both

results might indeed hide any difference between the out-

put (KS) and the input (HF) densities. Note that the overlap

between KS and HF wavefunctions obtained in [4] seems

to corroborate this conclusion.

4 The semi-integrated expression of the exchange

energy

According to the foundations of DFT theory, we start by

writing a generalized exchange energy functional as:

EDFT
x ¼

ZZ
ex qðrÞ; qðr0 Þ; q0 ðrÞ; q0 ðr0 Þ; . . .
h i

drdr
0 ð36Þ

where qðrÞ and q
0 ðrÞ are the density and its first derivative.

Note that Eq. 36 stresses the non-local nature of the exact

exchange energy. As a matter of fact, in HF theory the

above expression is merely written in terms of the orbitals,

as in Eq. 23. In the framework of a gradient corrected

approximation, GGA and further extensions thereof, the

exchange energy is written as a local functional:

Table 1 Total (E) and one-electron (e) energies (in a.u.) for He, Be, and

Ne atoms calculated with different exchange-only theories

Atom HFa OEPa xSa B88b KSa

He

E -2.8617 -2.8617 -2.8617 -2.8608 -2.8617

�1s -0.918 -0.918 -0.918 -0.549 -0.918
P

i �i -0.918 -0.918 -0.918 -0.549 -0.918

Be

E -14.5730 -14.5725 -14.5614 -14.5639 -14.5724

�1s -4.733 -4.123 -4.624 -3.877 -4.125

�2s -0.309 -0.311 -0.326 -0.181 -0.309
P

i �i -5.042 -4.434 -4.950 -4.058 -4.434

Ne

E -128.5471 -128.5455 -128.5007 -128.5693 -128.5454

�1s -32.772 -30.710 -32.076 -30.488 -30.821

�2s -1.931 -1.602 -1.751 -1.294 -1.7120

�2p -0.850 -0.733 -0.912 -0.456 -0.852
P

i �i -37.253 -34.511 -35.653 -33.150 -35.097

a Taken from [6]
b Done here with the 6-311??G** basis sets and the ORCA package [76]
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EGGA
x ¼

Z
eGGA

x ½qðrÞ�dr; ð37Þ

although, admittedly, eGGA
x ½qðrÞ� might include an explicit

dependence on a variety of gradient-like corrections

(rqðrÞ; rqðrÞj jn;r2qðrÞ; etc) which thus include the

most common approximations up to the fourth rung of

Jacob’s ladder [30]. Let us suppose now that the latter

equation intends to mimic the features of Eq. 36, in that

case:

eGGA
x ¼

Z
ex qðrÞ; qðr0 Þ; q0 ðrÞ; q0 ðr0 Þ; . . .
h i

dr
0
; ð38Þ

while the corresponding exchange potentials are defined by

the functional derivation of both forms,
dEDFT

x

dq and
dEGGA

x

dq :

Thus, the potentials obtained by the two different paths are

not equivalent, as we will show later, and this feature might

explain the wrong behavior experienced by all the GGA or

meta-GGA exchange potentials obtained as the functional

derivative of a semi-integrated expression.

In fact, let us consider for the sake of simplicity the

following functional:

F½f � ¼
Z

f ðxÞk½f ðxÞ�dx; ð39Þ

where k½f ðxÞ� is an unknown functional of f(x). The

variational derivative of the above equations is:

dF½f �
df
¼ k½f ðxÞ� þ

Z
f ðx00 Þ

dk f ðx00 Þ
� 

df ðxÞ dx
00
: ð40Þ

Taking for k½f ðxÞ�;

k½f ðxÞ� ¼
Z

f ðx0 Þhðx; x0 Þdx
0
; ð41Þ

where f(x) is a continuous and derivable function in the

whole interval of integration and hðx; x0 Þ is a function that

does not depend on f, and making the adequate changes in

the indexes, the functional derivative of F[f] would finally

read as:

dF½f �
df ðxÞ ¼ 2

Z
f ðx0 Þhðx; x0 Þdx

0
: ð42Þ

On the other hand, if k½f ðxÞ� is explicitly integrated over x
0
;

and the resulting function g(x) is inserted into Eq. 39, we

arrive at the semi-integrated (SI) expression:

FSI ½f � ¼
Z

f ðxÞgðxÞdx: ð43Þ

Note that g(x) here can be also a function of f(x), such as it

happens in the example given in next subsection. Hence,

the functional derivative must be written as [31, 32]:

dFSI½f �
df ðxÞ ¼ gðxÞ þ f ðxÞogðxÞ

of ðxÞ; ð44Þ

which generally differs from Eq. 42; the equality of both

results are obviously obtained if hðx; x0 Þ ¼ dðx� x
0 Þ; where

dðx� x
0 Þ is the Dirac delta function. We can thus clearly

established at this stage that the two ways followed to

obtain the functional derivative are not fully equivalent.

4.1 A simple model for atomic systems

For a closed-shell two-electron system, such as the ground

state of the Helium atom, the exchange energy is:

Ex½q� ¼ �
1

4

ZZ
qðrÞqðr0 Þ

r� r0j j drdr
0
; ð45Þ

which following Eq. 40 leads to the corresponding

exchange potential,

vx½q� ¼ �
1

2

Z
qðr0 Þ
r� r0j jdr

0
: ð46Þ

Let us suppose that the density of the ground-state of the

Helium atom is represented by an hydrogen-like function

such as:

qðrÞ ¼ N
n3

p
e�2nr; ð47Þ

where N and n are the number of electrons and the effective

nuclear charge, respectively. This model density has been

repeatedly used in theoretical studies of exchange-

correlation functionals and their formal properties [33–

38]. If we resort to the expression of r� r
0�

�
�
��1

in terms of

the associated spherical harmonics, and the subsequent

integration of the r
0

coordinate, it is easily verified that Eq.

46 transforms to:

vx½q� ¼ �
p

2rn3

Nn3

p
� qðrÞ 1þ nrð Þ

� �

: ð48Þ

On the other hand, the functional derivative of the semi-

integrated expression for Ex½q� :

ESI
x ½q� ¼

1

2

Z
qðrÞvx½q�dr; ð49Þ

has as a result:

vSI
x ½q� ¼ vx½q� þ

N

4r
: ð50Þ

Figure 1 shows how the potentials given by Eqs. 48 and 50

evolve as a function of the distance from the nucleus for a

value of n (1.6395) for which the energy reaches its opti-

mum value. We remark how the potential obtained from

Eq. 48 exhibits all the features of the exact exchange

potential, particularly its finiteness at both limits (-2n for

r ! 0 and 0 for r !1). Note that the small differences

with respect to the exact potential, Eq. 46 with qðrÞ
obtained from [39], are attributed to the use of an
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approximate density at this stage. On the other hand, vSI
x ½q�

diverges at the origin and leads to an asymptotic trend

different from the exact one.

4.2 Features of common exchange potentials

Considering the preceding results, it is now turn to discuss

the application of a wide set of the GGA exchange

potentials [30, 40, 41] obtained as the functional derivative

of the corresponding local exchange functional. The

chronologically ordered sample of the Sham–Kleinman

(SK71) [42, 43], Langreth–Mehl (LM83) [44], Perdew–

Wang (PW86, PW91) [45–47], Becke (B86, B88) [29, 48,

49], OuYang–Levy (OYL91) [50, 51], Engel-Chevary-

MacDonald-Vosko (ECMV92) [52], Lacks–Gordon

(LG93) [53], Gill (G96) [35], Perdew–Burke–Ernzerhof in

both the original (PBE96) [54] and revised versions

(r-PBE96, [55] and RPBE96 [56]), and Tozer–Handy

(TH98) [57] models are chosen. Figure 2 compares the

exchange potential with the exact expression obtained

again from Eq. 46. For the sake of clarity, only the LDA,

B88, and OYL91 results are shown. A subset from the

whole set of potentials (LM83, SK71, and G96) behaves

very similarly to the OYL91 while the rest of them are very

close to B88. All the calculations were made using the

density obtained from the correlated Roothaan–Weiss

wavefunction [39], which has been shown to be accurate

enough in the determination of DFT quantities for this two-

electron system [58, 59]. We observe several important

features in close agreement with previous studies [41, 60]:

(a) All the GGA potentials diverge at the nucleus; (b) the

asymptotic limit of the exact potential (-1/r) at large

distances is not reached by any of the expressions and some

of them even diverges or show spurious minimum, and (c)

all the models have very similar shapes in the intermediate

region and are qualitatively wrong. We would like to

underline that all the expressions derived from a semi-

integrated model seems to share the same drawbacks

independently of the constraints and/or parameters entering

into the model. Note that we do not consider at this stage

the new generation of functionals that include higher

derivatives of the density [61–65]. We have previously

shown [66] that the semi-integrated form, even if it is

expanded in a Taylor series to include dependences on

higher derivatives of the density, does not converge to the

exact solution; thus, the results exposed here are believed

to be largely independent of the density functional

employed.

We continue with some numerical tests to complement

the previous conclusions. If vx½q� is the functional deriva-

tive of the exact functional for the exchange energy, the

following relation (derived from the virial theorem)

between vx½q� and Ex½q� is accomplished [67, 68]:

Evirial
x ½q� ¼ �

Z
qðrÞr � rvx½q�dr

�
Z

3qðrÞ þ r � rqðrÞ½ �vx½q�dr: ð51Þ

The results from the use of the latter expression are

expected to confirm the previous reasoning. If vx½q� and

qðrÞ are known exactly, the relation must give the exact

value for Ex [37, 69, 70]. Table 2 presents the value of this

0.0 1.0 2.0 3.0 4.0 5.0

r (a.u.)
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-2.0

-1.5

-1.0
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v x (

a.
u.

)

vx

vx
SI

vx
KS

 (exact)

Fig. 1 Plot of the vx and the vSI
x of Eqs. 48 and 50, as a function of r

and using Eq. 47, together with the exact exchange potential vKS
x

evaluated by Eq. 48 and the density taken from [39]
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Fig. 2 Comparison of various approximate GGA exchange potentials

with the exact expression of Fig. 1

Table 2 Comparison of the exchange energy (in a.u.) provided by

the virial expression

Ex vx½q� vSI
x ½q�

He -1.0247 -1.0247 0.6148

The exact result is the number given in the first column
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integral when vx½q� (Eq. 48) and vSI
x ½q� (Eq. 50) are

inserted together with the density given by Eq. 47. It is

easily seen how vx½q� provides the exact value for the

exchange energy; however, the same cannot be affirmed for

vSI
x ½q�; which clearly show again the non-equivalence of

both procedures. We also note that the Ayers–Levy sum

rule [71] for the exchange potential:

4p ¼
Z

drr2vx½q�; ð52Þ

does not allow to discriminate between the exact (vx½q�)
and the semi-integrated (vSI

x ½q�) form since the asymptotic

decay of both potentials is correct to order 1/r in the limit

of large r.

Table 3 lists next the results obtained now when an

approximate GGA potential is inserted into Eq. 51. The first

column lists the exchange energy as provided by an accu-

rate integration of the labeled functional, whereas the values

obtained from the inclusion of the corresponding GGA

potentials into Eq. 51 are under the header Evirial
x ½q�: The rest

of the columns collect the relative errors with respect to the

exact value. The results are fully consistent with the above

conclusion; i.e., the exchange potentials usually employed

for the resolution of the KS one-electron equations are

associated to expressions that aim to reproduce the semi-

integrated form of the exact exchange energy and, therefore,

cannot truly represent the exact exchange potential.

Amazingly, all the approximate models behave reasonably

well for the evaluation of the exchange energy of the

system, as can be confirmed from further inspection of

Table 3. Despite the wrong behavior at all distances, mainly

at both the nucleus and asymptotic limits [72, 73], accurate

values are obtained for several functionals. For instance,

OYL91 provides roughly the same value for the exchange

energy either by integration of the corresponding energy

density or by inserting the corresponding functional into Eq.

51. On the other hand, the well-known B88 functional gives

a very accurate value when integrated but largely deterio-

rates when the energy is evaluated through Eq. 51. Thus, the

good values obtained might be possibly attributed to a

subtle cancellation of local errors [74]. The LDA functional

is an exception since this is a local functional by its own

construction which thus does not belong to any semi-inte-

grated form of a non-local functional. Hence, the potential

obtained by functional derivation should satisfy Eq. 51, as is

indeed the case. In view of these results, we might rea-

sonably state that the main reason for the generalized

failures of the DFT exchange potentials is the use of a semi-

integrated expression of the exchange energy to obtain the

associated potentials, even if the integrand is well-fitted to

reproduce with the highest accuracy the integrand of the

exact semi-integrated form.

5 Conclusions

A set of important aspects within the current DFT frame-

work, under which the majority of exchange energy

functionals and associated exchange potentials are formu-

lated, have been throughly discussed. We tackle a

combined approach in which purely theoretical reasonings,

together with analytical soluble models which are consid-

ered to serve as benchmark systems for the development of

approximated but accurate and manageable approxima-

tions, are first considered and then further supported by

complementary numerical proofs. We have first discussed

the variational problem associated to the KS equations, and

the non-equivalence between the local exchange potential

of KS theory and the non-local exchange potential of the

HF theory in order to conclude that a correlation-free KS

theory having a local exchange potential able to provide

the exact HF density seems not to be feasible. We have

shown, through a combination of integrated values

and point-wise quantities, the inability for GGA-based

approximate exchange potentials to reproduce the charac-

teristics of the exact exchange potential; this drawback

being related with their derivation from expressions which

are local in nature. As a by-product, the use of only inte-

grated quantities when developing theoretical procedures

seems to be not highly recommended since the integrated

magnitudes may not fully represent the complexity of the

problem [75].

Table 3 The exchange energy (in a.u.) of the He atom evaluated

from approximate GGA exchange functionals ðEGGA
x ½q�Þ and by

inserting the corresponding GGA-derived potentials in the virial

expression (Evirial
x ½q�)

EGGA
x ½q� dr Evirial

x ½q� dvirial
r

LDA -0.8836 -13.8 -0.8835 -13.8

SK71 -1.0061 -1.82 -1.0054 -1.89

LM83 -1.0140 -1.04 -1.0132 -1.12

PW86 -1.0328 0.79 -1.0418 1.67

B86 -1.0270 0.47 -1.1790 15.1

B88 -1.0252 0.04 -1.0092 -1.52

OYL91 -1.0278 0.29 -1.0280 0.32

PW91 -1.0162 -0.84 -1.0234 -0.13

ECMV92 -1.0255 0.08 -1.0336 0.86

LG93 -1.0279 0.30 -1.0378 1.28

G96 -1.0280 0.32 -1.1022 7.56

PBE96 -1.0134 -1.11 -1.0210 -0.36

r-PBE96 -1.0284 0.36 -1.0011 -2.30

RPBE96 -1.0310 0.62 -1.0402 1.51

TH98 -1.0979 7.14 -1.2930 26.2

The corresponding signed relative error (dr and dvirial
r ; both in %) with

respect to the exact value is also shown
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66. Moscardó F, Sancho-Garcı́a JC (1998) Chem Phys Lett 294:314

67. Ghosh SK, Parr RG (1985) J Chem Phys 82:3307

68. Levy M, Perdew JP (1985) Phys Rev A 32:2010

69. Gaiduk AP, Staroverov VN (2008) J Chem Phys 128:204101

70. Staroverov VN (2008) J Chem Phys 129:134103

71. Ayers PW, Levy M (2001) J Chem Phys 115:4438

72. Qian Z (2007) Phys Rev B 75:193104

73. Tozer DJJ (2000) Chem Phys 112:3507

74. Engel E, Vosko SH (1993) Phys Rev B 47:13164

75. Engel E (2003) Lect Notes Phys 620:57

76. Neese F (2006) ORCA—an ab-initio, density functional and

semiempirical program package, version 2.6.35 University of

Bonn

Theor Chem Acc (2009) 123:197–205 205

123


	Some questions on the exchange contribution to the effective potential of the Kohn-Sham theory
	Abstract
	Introduction
	The Kohn-Sham equations
	Background and previous considerations
	The constrained variation of the energy

	The exchange potential in a correlation-free�Kohn-Sham theory
	The semi-integrated expression of the exchange energy
	A simple model for atomic systems
	Features of common exchange potentials

	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


